Impact of Tree-Oriented Growth Order in Marker-Controlled Region Growing for Individual Tree Crown Delineation Using Airborne Laser Scanner (ALS) Data

نویسندگان

  • Zhen Zhen
  • Lindi J. Quackenbush
  • Lianjun Zhang
چکیده

Region growing is frequently applied in automated individual tree crown delineation (ITCD) studies. Researchers have developed various rules for initial seed selection and stop criteria when applying the algorithm. However, research has rarely focused on the impact of tree-oriented growth order. This study implemented a marker-controlled region growing (MCRG) algorithm that considers homogeneity, crown size, and shape using airborne laser scanning (ALS) data, and investigated the impact of three growth orders (i.e., sequential, independent, and simultaneous) on tree crown delineation. The study also investigated the benefit of combining ALS data and orthoimagery in treetop detection at both plot and individual tree levels. The results showed that complementary data from the orthoimagery reduced omission error associated with small trees in the treetop detection procedure and improved treetop detection percentage on a plot level by 2%–5% compared to ALS alone. For tree crown delineation, the growth order applied in the MCRG algorithm influenced accuracy. Simultaneous growth yielded slightly higher accuracy (about 2% improvement for producer’s and user’s accuracy) than sequential growth. Independent growth provided comparable accuracy to simultaneous growth in this study by dealing with overlapping pixels among trees OPEN ACCESS Remote Sens. 2014, 6 556 according to crown shape. This study provides several recommendations for applying region growing in future ITCD research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual Tree Crown Delineation from Airborne Laser Scanning for Diseased Larch Forest Stands

Airborne laser scanning (ALS) can be utilised to derive canopy height models (CHMs) for individual tree crown (ITC) delineation. In the case of forest areas subject to defoliation and dieback as a result of disease, increased irregularities across the canopy can add complications to the segmentation of ITCs. Research has yet to address this issue in order to suggest appropriate techniques to ap...

متن کامل

Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners

In this study, individual tree height (TH), crown base height (CBH), crown area (CA) and crown volume (CV), which were considered as essential parameters for individual stem volume and biomass estimation, were estimated by both an airborne laser scanner (ALS) and a terrestrial laser scanner (TLS). These ALSand TLS-derived tree parameters were compared because TLS has been introduced as an instr...

متن کامل

Adaptive Methods for Individual Tree Detection on Airborne Laser Based Canopy Height Model

One problem of individual tree detection on aerial images or on raster canopy height models is handling of tree crowns of different sizes. On laser scanner data one size attribute, height, is directly available. This gives possibilities to develop processing methods that adapt to the object size. In this study, three adaptive methods were developed and tested for individual tree detection on ca...

متن کامل

Interpretation of Forest Resources at the Individual Tree Level in Japanese Conifer Plantations Using Airborne LiDAR Data

More than 50% of the national lands in Japan have been surveyed by airborne laser scanning (ALS) data with different point densities; and developing an effective approach to take full advantage of these ALS data for forest management has thus become an urgent topic of study. This study attempted to assess the utility of ALS data for individual tree detection and species classification in a mixe...

متن کامل

A Region-Based Hierarchical Cross-Section Analysis for Individual Tree Crown Delineation Using ALS Data

In recent years, airborne Light Detection and Ranging (LiDAR) that provided three-dimensional forest information has been widely applied in forest inventory and has shown great potential in automatic individual tree crown delineation (ITCD). Usually, ITCD algorithms include treetop detection and crown boundary delineation procedures. In this study, we proposed a novel method called region-based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014